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A new family of capillary waves 
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A new family of finite-amplitude periodic progressive capillary waves is presented. 
They occur on the surface of a fluid of infinite depth in the absence of gravity. Each 
pair of adjacent waves touch a t  one point and enclose a bubble at pressure P. P 
depends upon the wave steepness s, which is the vertical distance from trough to  crest 
divided by the wavelength. Previously Crapper found a family of waves without 
bubbles for 0 < s < s* = 0-730. Our solutions occur for all s > s** = 0.663, with the 
trough taken to  be the bottom of the bubble. As s + co, the bubbles become long and 
narrow, while the top surface tends to a periodic array of semicircles in contact with 
one another. The solutions were obtained by formulating the problem as a nonlinear 
integral equation for the free surface. By introducing a mesh and difference method, 
we converted this equation into a finite set of nonlinear algebraic equations. These 
equations were solved by Newton’s method. Graphs and tables of the results are 
included. These waves enlarge the class of phenomena which can occur in an ideal 
fluid, but they do not seem to have been observed. 

1. Introduction 
Crapper (1957) found a one-parameter family of explicit exact solutions for two- 

dimensional periodic progressive capillary waves of finite amplitude in water of 
infinite depth. The parameter is the steepness s, which is the vertical distance from 
trough to crest divided by the wavelength. His solutions are valid from s = 0, when the 
surface is flat, to s = s* = 0.730, when each two adjacent waves touch one another at 
one point (see figure 1). For s > s*, his formulae yield overlapping waves withmultiple- 
valued velocities, so they are not admissible as solutions of the physical problem. Thus 
the wave of greatest steepness in this family is that with s = s*. 

We have found a new family of waves of still greater steepness. They all have 
adjacent waves touching a t  one point, just like Crapper’s highest wave. Thus each 
two adjacent waves enclose a region devoid of fluid, which we call a bubble. The 
pressure P(s)  in the bubble is an increasing function of the steepness, with P = 0 a t  
s = s* (see figure 2). These waves exist for all s > s** = 0.663, with P(s)  tending to a 
constant as s tends to + 00. Thus, in the interval s** < s < s*, both these waves and 
those found by Crapper exist, while, for s > s*, the new waves exist while Crapper’s do 
not. Some typical profiles of the waves and bubbles are shown in figure 3. 
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Our investigation was suggested by the work of Flaherty, Keller & Rubinow (1972) 
on post-buckling behaviour of elastic tubes and rings with opposite sides in contact, 
and by that of Flaherty & Keller (1973) on contact problems involving a buckled 
elastica. The method of solution is numerical, based upon the formulation of the 
problem as an integral equation for the free surface, as in Schwartz & Vanden-Broeck 
(1979) and Vanden-Broeck & Schwartz (1979). 

Kinnersley (1976) extended Crapper’s exact result to fluids of finite depth. His 
highest wave also occurred when adjacent waves touched. Schwartz & Vanden- 
Broeck (1979) computed numerically capillary-gravity waves in water of infinite 
depth. In  all the cases they considered the solutions were limited by contact of adjacent 
waves. The present method could be used to extend their solutions, as well as Kinners- 
ley’s, to greater values of the steepness. 

2. Formulation and solution without bubbIes 
Let us consider two-dimensional periodic capillary waves on the surface of an 

infinitely deep fluid. We assume that they are symmetric, have wavelength A, and 
propagate with phase velocity c without change of shape. Then we choose a reference 
frame in which the waves are steady, as is the fluid motion, which is assumed to be a 
potential flow. We also measure lengths in units of h and velocities in units of c, so that 
all variables become dimensionless. Then we introduce rectangular co-ordinates (5, y) 
with the origin at a crest, with the x axis parallel to the velocity at infinite depth and 
with the y axis directed out of the fluid. 

The fluid flow can be described by giving z = xi iy as an analytic function of the 
complex potential f = # + i$ in the region $ 6 0. We choose the stream function $ to 
vanish on the free surface, and we set g5 = 0 a t  x = y = 0. Then the free surface is given 
parametrically by x(#, 0 ) ,  y(#, 0)’ which we shall write as x(#), y(q5). We denote the 
complex velocity by q = u - iv, and by our choice of variables u tends to 1 and v tends 
to zero as tends to -a. 

Now the dynamical condition a t  the free surface yields the Bernoulli equation 

q q - l + T ~ = O  on @ = O .  (2.1) 

Here ij is the complex conjugate of q, K ( # )  is the curvature of the free surface (counted 
positive when the centre of curvature is on the fluid side of the surface) and T is the 

(2.2) 
dimensionless parameter 

In  (2.2) p is the fluid density and r is the surface tension of the surface. The choice of 
the constant in (2 .  I )  implies that the pressure above the surface equals that at infinite 
depth. Without loss of generality, we can set these pressures equal to zero. 

To determine the free surface we note that the function x$ -+ iy4 - 1 is analytic in the 
half-plane @ 6 0 and vanishes a t  $ = -moo. Therefore its imaginary part on the line 
$ = 0 is the Hilbert transform of its real part: 

T = 2~/pAc2. 

The integral in (2.3) is to be understood in the Cauchy principal value sense. 
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We now use the assumed periodicity and symmetry of the surface to rewrite (2.3) 

4 in the form 
!I$($) = J rx$($’) - 11 [cot 44’  - 4) - cot n($’ + $11 w. (2.4) 

(2.5) 

Finally we note that the steepness s of the waves can be expressed in terms of y+(#) by 
the formula 

0 
We next rewrite the condition (2.1) as 

(XZ + y g y  - 1 - T(x+ y$$ - y$ x$$) (x$ + y p  = 0. 

For a given value of s, (2.4)-(2.6) are a set of integro-differential equations for the 
functions x$(#), y+(Q) and the parameter T. The surface shape x($), y(#) can be ob- 
tained from the solution by integration, and the wave speed c can be found from (2.2). 
The solution of these equations should be Crapper’s solution. 

To solve these equations, we introduce the N +  1 mesh points q5i = (i - 1)/2N and 
the unknowns xi = z$(#J, i = 1, ..., N + 1. Then we compute yi+* midway between 
mesh points from (2.4) using the trapezoidal rule. Next we compute y; and yi from the 
Y ~ G  by a centred four-point Lagrange interpolation formula and a centred four-point 
difference formula, respectively, using the periodicity and symmetry of x$. We also 
compute x; from the xi by a four-point difference formula. By using these expressions 
in (2.5) at the points #i, we obtain a system of N + 1 nonlinear algebraic equations. 
Then by using (2.4) in (2.6) we obtain another algebraic equation. Thus we obtain 
N + 2 equations for the N + 2 unknowns xi, . . . , xhtlr T. We solve these equations by 
Newton’s method. The entire numerical procedure follows closely that used by 
Vanden-Broeck & Schwartz (1979) and Schwartz & Vanden-Broeck (1979). 

Some of the results obtained by this method for 0 ,< s < s* are shown in table 1 and 
in figure 1. They were obtained for various values of s with N = 40 and N = 60. The 
results for these two values of N ,  shown in table 1, agree to four decimal places. They 
also agree well with Crapper’s exact solution, which is given in the last column of the 
table. This is a good check on our numerical method. 

In  figure 1, a few free surface profiles are shown for different values of s up to s = 0-73,  
at which the surface touches itself and forms a bubble. For s > 0.73 our numerical 
solution crosses itself, just as does Crapper’s exact solution. Then the solution is not 
physically meaningful. In  Crapper’s solution, the streamlines of the flow for a wave of 
given steepness are themselves free surface profiles for waves of smaller steepness, so 
they are shown that way in figure 1. 

3. Waves with bubbles 
To obtain solutions for s s* we require the free surface to be in contact with itself 

at one point within each wavelength. Let us denote by a the # co-ordinate of the contact 
point in the interval 0 6 # ,< 4. Then by symmetry we have 

X + W  = 0, (3.1) 

x(a) = Z$($’)d$’ = +. I: 
If we adjoin (3.1) and (3.2) to (2.4)-(2.6), we have two additional equations but only 

6-2 



164 J . -M.  Vanden-Broeck and J .  B .  Keller 

8 N = 40 N = 60 Crapper 

0- 1 0.32221 0.32221 0.32221 
0.2 0.33365 0.33365 0-33365 
0.3 0.35188 0.35188 0.35188 
0.5 0.40474 0.40475 0.40475 
0.73 0.48428 0.48430 0.4 8 4 3 0 

TABLE 1. Comparison of computed values of T for N = 40 and N = 60 
with Crapper’s exact value. 

s = 0.73 

s = 0.5 

FIGURE 1. Computed free surface profiles for various values of the steepness s. The unit of 
length is the wavelength. These results agree with Crapper’s explicit solution for 0 < s < 0.73. 

one additional unknown, a. Therefore we cannot expect the enlarged set of equations to 
have a solution for any value ofs other than s*, when the solution is Crapper’s highest 
wave, which satisfies (3.1) and (3.2) with a = a* = 0.17. This expectation is in agree- 
ment with the results of numerical calculation which did yield Crapper’s solution for 
s = s*, but which did not yield any solution for s > s*. 

The physical reason why the enlarged problem does not have a solution with s > s* 
is that it  requires the pressure P in the bubble to be the same as that above the free 
surface, i.e. to be P = 0. It is to be expected that the pressure within a bubble will have 
some value other than zero, which we cannot prescribe. Therefore we shall modify the 
free surface condition (2.5) by introducing the unknown bubble pressure Pinto it in the 
interval a < $ < +, which corresponds to the bubble surface. Thus we replace (2.5) by 

Here P is measured in units of pc2. 
Now we consider (2.4), (2.6), (3.1)-(3.3) as a set of equations for xg($), y,($), T, a 

and P, for a given value of s. We have added the two equations (3.1) and (3.2) to the 
problem of 5 2, and added the two unknowns a and P, so we expect the new problem to 
be solvable. 
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A 

1.0 

0.5 

P 

-0.5 

-1.0 

-1.5' 

8 P T K S 

0.6635 -1.6 0.4727 3.11 3.8 

0.73 0 0 4843 3.57 4.31 
0.75 0.13 0.4863 3-7 1 4.46 
0.85 0.48 0.4933 4.43 5.24 
1.05 0.75 0.4983 5.93 6.83 
1.4 0.89 0.4998 8-6 1 9-66 

TABLE 2. Computed values of P ,  T, K and S for various values of s. 

0.7 - 0.28 0.4801 3.36 4.08 

- 

- 

I > 
0.5 

- 

- 

FIGURE 2. The bubble pressure P (in units of pc2) versus the steepness s for the new family of 
waves with bubbles. P tends to unity aa s -f 03 and P = 0 at s = 0.73. The axis P = 0 corm- 
ponds to Crapper's solution, which is physically meaningful for 0 < s < 0.73 and unphysical for 
8 > 0.73. 

We shall solve this problem by a numerical method similar to that of the previous 
section. We introduce the Nl + N2 + 1 mesh points qii defined by 

(3.4) 1 qii = a(i- I)/Nl, i = 1,  ..., N,, 

#i = a + ( + - a ) ( i - N l - l ) / N z ,  i = N1+1, . . . , N l +  N2+1. 

We then introduce the corresponding unknowns xi = xc(qii). Next we discretize 
(2.4) and (2.5) a t  the mesh points. In doing so, weobserve from (3.3) that the curvature 
of the surf'ace jumps by - P/T a t  qi = q15,,,,+~ = a. Therefore, in interpolating and 
finite differencing at  a point on either side of this discontinuity, we use only mesh 
points on the same side. 

By using the differenced form of (2.4) as before to eliminate yc from the differenced 
form of (2.5), we obtain a set of Nl+N2+ 1 nonlinear algebraic equations for the 
Nl + N, + 4 unknowns xi, T, a and P. We get three more equations from (2.6), (3.1) 
and (3.2), thus obtaining Nl + N2 + 4 equations for the same number of unknowns. This 
system of equations is solved by Newton's method. 
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FIQUFLE 3. Computed profiles of the free surface and bubble for five values of 8 .  
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For s slightly greater than s*, the iterations are started with Crapper’s highest wave 
as a first approximation. After the iterations converge, the solution is used as an initial 
approximation to compute the solution for a slightly larger value of s, and so on. 
The program was run on a CDC 6600 computer with 60 mesh points. 

4. Discussion of results 
Our main numerical results are presented in table 2 and in figures 2-5. The bubble 

pressure P,  computed for various values of the steepness s, was used to draw the smooth 
curve in figure 2. This curve crosses the s axis at s = 0.730, where P = 0, and the corres- 
ponding solution is Crapper’s highest wave. His solution for waves of smaller steepness 
is represented by the segment of the s axis from s = 0 to s = 0.730. The portion of the 
s axis with s > 0.730 represents the non-physical analytic continuation of his solution, 
while the curve represents the physical continuation. Figure 3 gives the computed 
free surface profiles for various values of s, and shows that the bubble size increases as 
s increases. 

We see that the new solution exists both for s > 0.730, where it is steeper than 
Crapper’s steepest wave, and for 0-663 < s < 0.730. Thus there are two physically 
admissible solutions for 0.663 < s < 0.730, Crapper’s solution and the new one. The 
pressure P increases with s along the curve in figure 2, so the bubble pressure exceeds 
the (atmospheric) pressure above the fluid for s > s* and is less than that pressure for 
s < s*. The largest value of s for which we have computed the solution is s = 1.5. We 
believe that we could compute the solution for larger values of s by increasing the 
number of mesh points, and that the solution exists for all s > 0.663. 

As s increases, the fluid velocity q at and near the surface decreases to zero as s -+ co. 
It then follows from (3.3) that the curvature of the free surface tends to the constant 
value -T-l for 0 < $ < a. Consequently this portion of the free surface tends to a 
quarter of a circle, the diameter of which must be equal to the wavelength 1. Therefore 
its curvature tends to - 2, so T tends to 4. The curvature of the bubble, on the other 
hand, tends to zero a t  q5 = a, and therefore from (3.3) the pressure P tends to 1.  

These considerations indicate that, as s + co, the surface tends to a periodic array of 
semicircles in contact with one another, the bubble boundaries tend to the two sides of 
the vertical lines beneath the contact points, and the fluid velocity at  and near the 
surface tends to zero. This represents the inner asymptotic form of the solution as 
s+co, for y fixed. 

The outer asymptotic form is represented by the flow beneath a periodic array of 
bubbles, each of which extends upward to y = + co with a width which tends to zero 
as y + + 03. Matching of the two asymptotic solutions shows that the velocity q in the 
inner solution is proportional to e-ns, which decreases rapidly as s increases. The bubble 
width is also proportional to eZn(7J--8). 

The bubbles become very long as s increases, but adjacent bubbles cannot come 
into contact with one another. If they did, they and the free surface would enclose a 
bounded region of fluid which would therefore have to be at  rest. Then the adjacent 
bubble surfaces would be circular arcs concave upward. They cannot be tangent to one 
another without being semicircles, which would require infinite curvature at  the point 
of tangency. This is not allowed by the free surface condition. 

As the steepness s decreases below 0.730, P becomes more and more negative and the 
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0.5 

T 

0.4 

0.3 
0.5 0.73 1 

F 

FIGURE 4. The dimensionless parsmeter T = 2u/phc2 tm a function of the steepness 8. The lower 
curve corresponds to Crapper’s solution and the upper curve to the new solution. These curves 
determine the wave velocity c in terms of h and s, so they represent the nonlinear dispersion 
equation for the waves. 

bubble becomes smaller. Figure 3 shows that the curvature at  q5 = a- is positive. Thus 
the bubble cannot shrink to a point as s decreases. If it did the velocity at  q5 = a would 
tend to infinity. Then the curvature at q5 = a- would have to be negative in order to 
satisfy ( 3.3). 

We conclude that the smallest steepness s** for which our family exists corresponds 
to zero curvature at 4 = a_. We found numerically that s** = 0.663. As we expected, 
the numerical scheme failed to converge for s c s**. 

In  figure 4 we present the values of the parameter T versw the steepness s for both 
Crapper’s solution and our new family. The two curves cross a t  s = 0.730. We note that 
T tends to 0.5 as s + co. This is in agreement with the asymptotic form of the solution 
as s -+ co, which is described above. 

The kinetic energy K and the surface energy S can be computed from our numerical 
solutions. Following Longuet-Higgins (1975) and Schwartz & Vanden-Broeck (1979), 
we define K and S by the relations 
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10 I 

0 0.5 0.73 1 
S 

FIGURE 5. The kinetic energy K and the surface energy S, per wavelength (in units of u2/pc2) as 
functions of the steepness s. The lower portion of each curve corresponds to Crapper’s solution, 
and the upper portion t o  the new solution. The upper portions are very nearly straight lines. 

The integrals in (4.1) and (4.2) were computed by the trapezoidal rule. Figure 5 shows 
the kinetic energy K and the surface energy S versus the steepness 8 for Crapper’s 
family of solutions and for our new family of solutions. 
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